Smart Cooler

Group 23 Chanxay Bounheuangviseth, CpE Matthew Schmit, CpE Thomas Huynh, EE Michael VIIIarante, CpE

Project Overview

Project Motivation

- Recreational enjoyment
- Assortment of technologies
- Practicality
- Previously encountered problems
- Quality of Life (QoL)

Project Goals and Objectives

Basic Goals

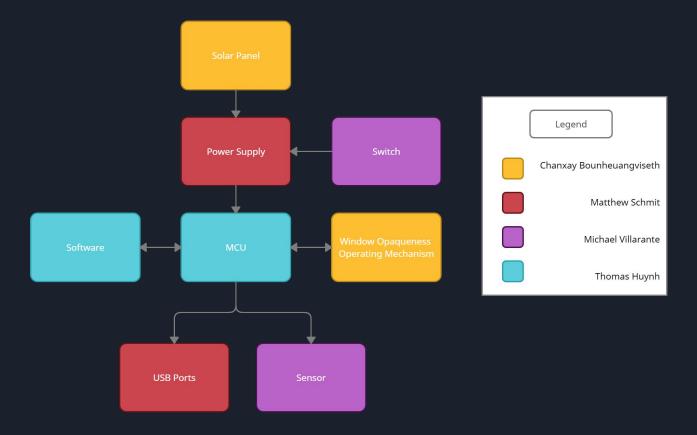
- PDLC technology
- Solar Panel
- Motion Sensor
- Temperature/ Humidity Sensor
- UV Sensor
- LED Lights

Advanced Goals

- USB-A Charging Ports
- Rechargeable Battery
- Graphical Interface
- Adjustable transparency on PDLC film

Stretch Goals

- Bluetooth speakers
- Mobile
 IOS/Android
 App
- Camera


Specifications

- The main feature to test is the PDLC Film itself and the overall Cooler weight
- The other components can be tested as an added bonus on top of the chosen specifications

Component(s)	Parameter	Specification
Battery	Discharge Time	4 Hours
PDLC Film	Power Consumption	≤ 10 Watts
PDLC Film	Time to Activate	≤ 5 Seconds
PDLC Film	Transparency	≥ 80%
PDLC Film	Opaqueness	10 - 90 %
Sensor	Accuracy	≥ 95%
Cooler	Weight w/o Food/Drinks	≤ 30 Pounds
PV Panel	Power Output	≥ 10 Watts

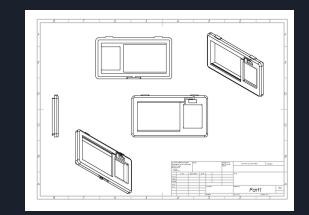
Overall Block Diagram

Significant Design Considerations

- Electrical components contained within the cooler should take up as little space as possible
- Electrical components, when power, should not change the temperature of the cooler by a large amount
- Electrical components contained within the cooler should not be disturbed by other items put inside the cooler (i.e. food, drinks, ice, etc.)
- New design of the cooler lid must be able to fit properly back onto the cooler to insure the cooler is still effective

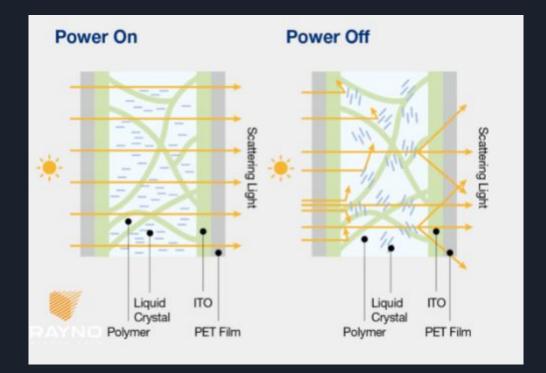
Significant Component Decisions

- Cooler: Large enough to have components embedded, able to be carried
- Sensors: Functionally benefit a cooler and our implementation
- PDLC: Ease of use as a film, size constraints
- Solar Panel: Needed to fit on the cooler lid
- Battery: Price, amount of charge it can hold
- LED lights: bright, efficient



Cooler Lid Design

- Cooler Lid needs a redesign to fit the new components
- Redesign specifically compensates for the Solar Panel, LCD, PDLC Glass, and wiring routes
- Cooler Lid intended to be 3D printed
- Area of the lid is measured to be around 60.1 ± .1 cm x 33.4 ± .1 cm


Polymer-Dispersed Liquid Crystal (PDLC) Film

- Opaque state while inactive
- Transparent while active
- Stripping and soldering the wires
- Window of the cooler lid

How PDLC Technology Works

Source: Rayno Window Film

Solar Panel

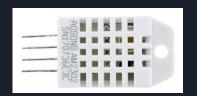
- 10 Watt/12 Volts Panel
- Monocrystalline
- 10 Amp Solar Charge Controller
- Mounting holes
- 34.29 x 23.37 x 1.524 cm
- Waterproof junction box

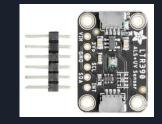
Solar Charger Regulator

- Regulating current flow from solar panel into battery bank
- Ensures battery is properly changed and not being damaged overtime
- Device acts as a pulse width modulator
- Cheaper compared to maximum power point trackers

LED Lighting Feature

- Brightness can be controlled
- Will be placed near the top of the inside of the cooler
- When on allows the contents of the cooler to be seen when lid is closed





Sensors

- Chosen sensors were the DHT22 (temperature/humidity), the Stemma QT LTR390 (uv), and the IRA-S210ST01 (motion)
- Cost effective and most useful towards the project but can be modified in the future
- Easy to setup and use for specific collection of data

Type of Sensor	Voltage	Dimensions	Price Range
Temperature	3.3V-6V	Small: 14mm x 18mm x 5.5mm; Big: 22mm x 28mm x 5mm	~\$10.00-\$11.00
Humidity	3.3V-6V	Small: 14mm x 18mm x 5.5mm; Big: 22mm x 28mm x 5mm	~\$10.00-\$11.00
UV	3V-5V	3cm x 2cm x 1cm	~\$5.00
Motion	2V-15V	9.2mm x 9.2mm x 18.2mm	~\$3.00
Tilt	24V	4mm x 22mm	~\$2.00
Pressure	N/A	18.3mm x 32mm x 0.4mm	~\$5.00
Sound	3.3V-5.3V	18.67mm x 34.42mm	~\$3.00-\$4.00

Switches

- Switch chosen to use was the micro-push button switch
- Very simple to use for operating the LED lights and cost effective for the project
- Other modifications can be made in the future for better functionalities

Type of Switch	Voltage	Size	Operation	Price Range
LED	N/A	Small	Physically push button	~\$2.00-\$3.00
Limit	125V AC	Small	Presence/absence of object	~\$1.00-\$2.00

LCD Screen

- 16x2 character display
- Allows for the data received from the sensors to be displayed
- Will cycle through the different readings from the sensors to allow everything to be displayed

Power Management

- The system will be powered by a 12 Volt 7200 mAh battery.
- The 12 Volts will power the PDLC film and LED Lights
- The 5 Volt Regulator and 3.3 Volt Regulator will step down the 12 Volts from the battery into manageable power for the other electronics.
- Mains Electricity will be the primary way to charge the battery.
- Solar panel will provide secondary charging to the battery while on the go.

Microcontrollers

- Chosen microcontroller is the ESP32-WROOM-32E on the HUZZAH32 breakout board
- Cheap and allows for potential upgrades in the future
- Allows for easy testing before creating final product

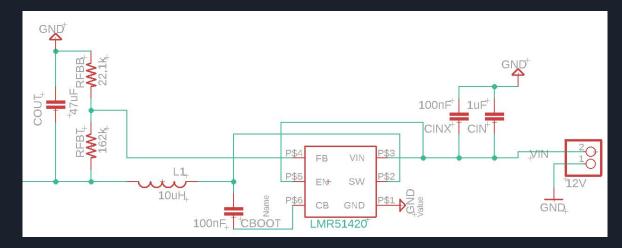
Description	ESP32	MSP430FR6989	ATmega4809	
Architecture	32-bit	16-bit	8-bit	
Integrated Development Environment	Arduino		AVR Studio	
Bluetooth	Dual Mode Bluetooth (Classic and BLE)	n/a	n/a	
Wi-Fi	802.11 b/g/n ~2.4 MHz	n/a	n/a	
Microprocessor Speed	240 MHz	16 MHz	20 MHz	
Voltage Supply	3 V ~ 3.6 V	1.8 V ~ 3.6 V	1.8 V ~ 5.5V	
Operating Temperature	-40°C ~ 105°C	-40°C ~ 85°C	-40°C ~ 125°C	
Memory Type	4 MB, Flash	128 kB, FRAM	48 kB, Flash	
ROM	448 KB	n/a	256 kB	
SRAM	536 kB	2 kB	6 kB	
¢osts	\$13.50	\$20.00	\$20.89	

Difficulties and Successes

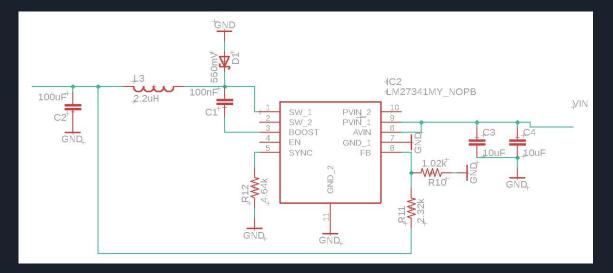
Difficulties

- Learning to operate 3D printing and other programs
- Working around everyone's schedule
- Certain parts took longer to test compared to others
- Design layout to make sure all the parts can fit with all the wiring and sensors

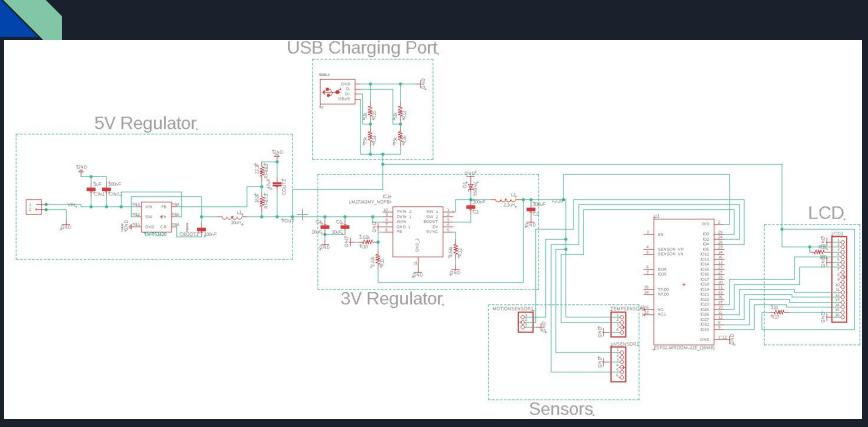
Successes


- Parts chosen all passed the testing process and work as they should
- Completing work on the project in a timely manner
- Acquiring skills with new technologies

Electrical Schematic/PCB



5V Voltage Regulator



- Schematic of 5V Voltage Regulator
- Using the LMR51420 Part
- Design with assistance of TI-WEBENCH
- Purpose is to power USB-A charging port
- Around 93.3% Efficiency

3.3V Voltage Regulator

- Schematic of 3.3V Voltage Regulator
- Using the LM27341MY_NOPB Part
- Design with assistance of TI-WEBENCH
- Purpose is to power the ESP32

Overall Schematic

PCB Design

Circuit Design Successes and Difficulties

Difficulties

- Footprint building for voltage regulators
- Proper connections to the microcontroller
- Testing voltage regulators

Successes

- Functioning electrical components
- Solar Panel generates an acceptable amount of energy
- No issues with power

Software/Programming

Arduino IDE

- C/C++
- Program the ESP32 Huzzah (Supported by Adafruit ESP32 Feather on Arduino)
- Testing components and prototyping
- Intuitive application
- Support from a wide range of libraries

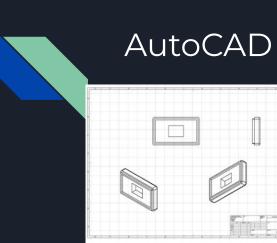
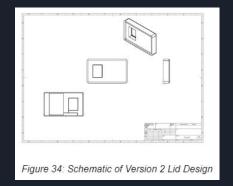
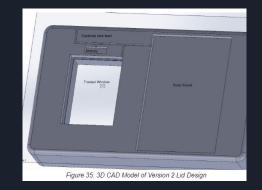
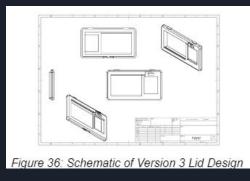
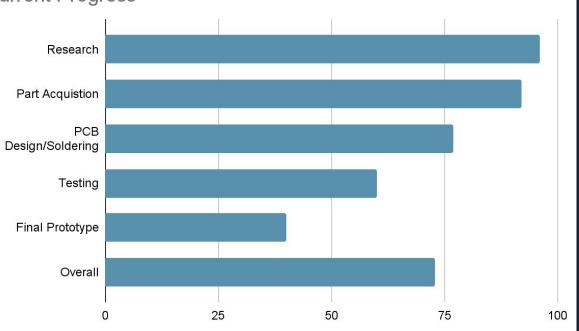





Figure 33: Schematic of Version 1 Lid Design

1100 P

Administrative Content


Budget

Item	Supplier	Price/Unit	# Units	Total Cost
Coleman 48 Quart Cooler	Amazon	\$34.99	1	\$34.99
10 Watt 12 Volt Monocrystalline Solar Panel	Amazon	\$32.99	1	\$32.99
PDLC Switchable Smart Film	Amazon	\$35.99	1	\$35.99
Adafruit HUZZAH32 – ESP32 Breakout Board	Adafruit	\$13.50	1	\$13.50
12-Volt 7 Ah Sealed Lead Acid (SLA) Rechargeable Battery	Home Depot	\$23.32	1	\$23.32
DHT22 Digital Temperature and Humidity Sensor	Amazon	\$10.35	4	\$41.40
LTR390 UV Sensor	Adafruit	\$4.95	4	\$19.80
USB-A UJ2-AV-1-TH	Digikey	\$0.70	4	\$2.80
Battery Snap pre-connected to a Micro Push-button Switch	Amazon	\$2.75	4	\$11.00
LCD1602 Module	Amazon	\$7.99	1	\$7.99
Total				\$223.78

Current Progress

Current Progress

Questions?